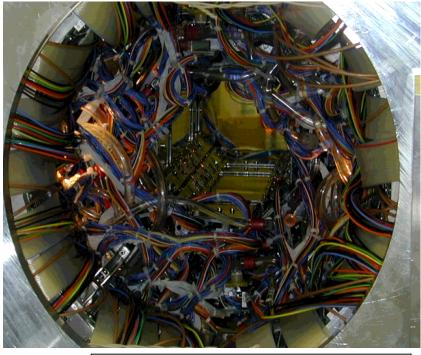
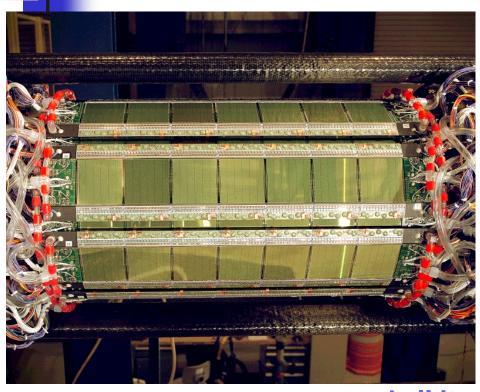


The SVT experience and possible Si-upgrades for STAR

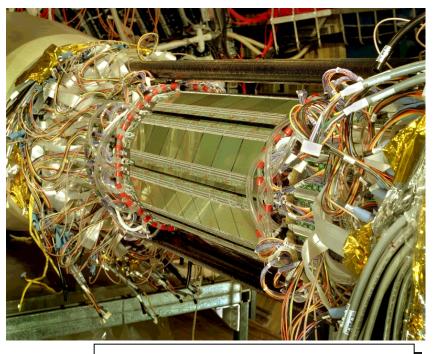

- 1 The SVT during year-2 running
- 1 A large Silicon tracker for STAR
- 1 A forward Silicon tracker for STAR

The SVT in STAR



Construction in progress

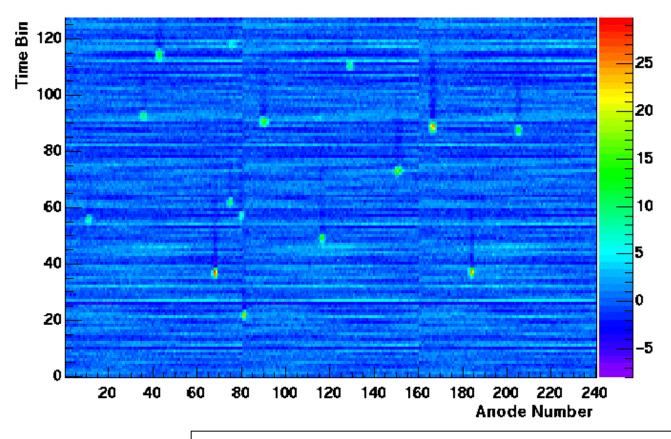
Connecting components



The SVT in STAR

... and all its connections

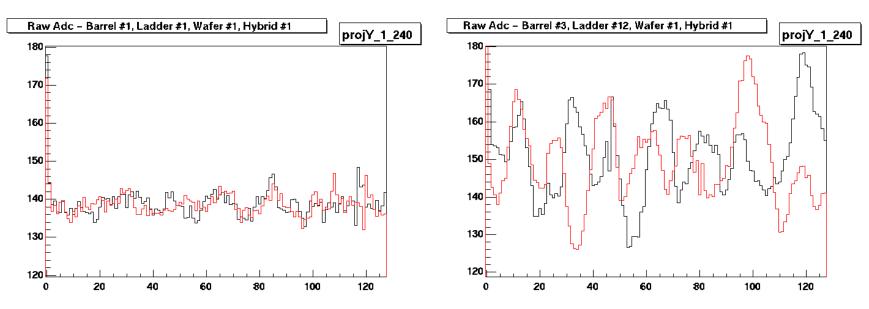
The final device....



STAR-SVT characteristics

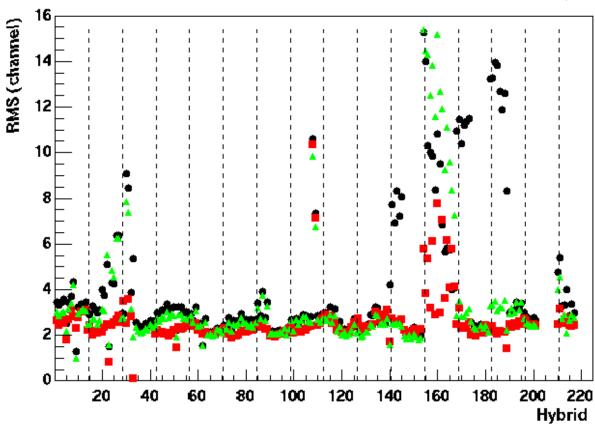
- 216 wafers (bi-directional drift) = 432 hybrids
- 1 3 barrels, r = 5, 10, 15 cm, 103,680 channels, 13,271,040 pixels
- 6 by 6 cm active area = max. 3 cm drift, 3 mm (inactive) guard area
- max. HV = 1500 V, max. drift time = $5 \mu s$, (TPC drift time = $50 \mu s$)
- anode pitch = 250 μm, cathode pitch = 150 μm
- SVT cost: \$7M for 0.7m² of silicon
- Radiation length: 1.4% per layer
 - 1 0.3% silicon, 0.5% FEE (Front End Electronics),
 - 1 0.6% cooling and support. Beryllium support structure.
 - FEE placed beside wafers. Water cooling.

A typical pattern on a hybrid for a central Au-Au event


central event: inner layer: ~15 hits/hybrid (middle: 8 hits, outer: 5 hits)

Problem: 'Common Mode Noise'

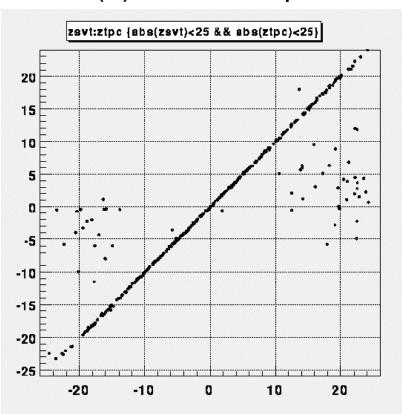
about 20% of the detector shows strong oscillations in raw ADC values

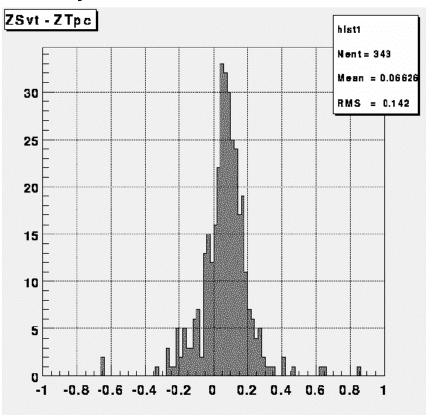


only a 30% noise increase, data can still be recorded in the noisy hybrids, but zero-suppression can not eliminate noise. Only offline analysis can eliminate noise. Data volume problem.

Noise stable in time and location

noise pattern in the outer SVT barrel over three days

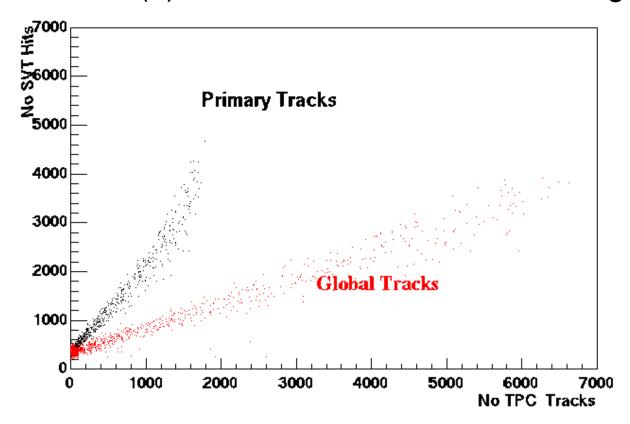



Problem: 'Common Mode Noise'

- most likely a shielding problem, affects half-ladders
- varies from event to event but not from anode to anode
- data still useable, can be easily subtracted in offline analysis
- can not be subtracted during data taking (zero-suppression)
- data volume in SVT increases six fold from 0.5 to 3 MByte/event
- STAR data volume increases by 30%, slows down data taking
- when the noise level rises, then the threshold requirement for zero-suppression leads to small clusters. Cluster finder has to be optimized for small cluster (down to single anode clusters).

How do we know the data are good?

Test (a): TPC independent primary vertex reconstruction



How do we know the data are good?

Test (b): TPC track to SVT hit matching

SVT Operating Experiences (I)

- after electronics assembly: 99.5% active channels
- 1 after mechanical assembly: 97.5% active channels
- 1 after full integration: 97% active channels
- loss of channels in mechanical assembly. Multiplexing in support lines is necessary but dangerous (e.g. lost 1.5% of channels due to a single HV line disconnect)

R. Bellwied, Vertex 2001, Brunnen

SVT Operating Experiences (II)

- common mode noise is a problem, good shielding is very important, avoid ground loops
- 1 RDO contributes more noise than expected, make sure that RDO (off-detector) is well shielded as well
- radiation not a big problem for us. Detector is very robust and can be operated during beam fills and magnet quenches
- under-pressure water cooling system is difficult to reliably operate, but detector temperature is very stable

R. Bellwied, Vertex 2001, Brunnen

Forward Physics in STAR

- 1 Charged hadron spectra (pt and rapidity) between $\eta = 2.5-4.0$ for AA and pA collisions.
- Separate peripheral collision program
- Important jet physics program in pp and pA.
- V0 reconstruction
- Better phase space for D-meson mass reconstruction through charged hadron channel

R. Bellwied, November 2000

New Physics Goals

Measurements in the baryon-dense regime

- In central collisions the forward region will be baryon-rich (high baryochemical potential). Exotic phenomena, e.g. centauro-like events and strangelets, are preferably produced in such an environment.
- this requires measurement of pid, momentum and Z/M ratio with silicon detectors.
- production of light nuclei and antinuclei carries information of baryochemical potential and of production mechanism in baryon-rich region compared to baryon-poor mid-rapidity region.
- anti-proton suppression due to increased annihilation?

R. Bellwied, June 2001

New Physics Goals (2)

Measurements in peripheral collisions

- study coherent collective effects on nuclei like diffractive and double-pomeron exchange.
- study exotic meson production for soft double pomeron exchange.
- study pomeron structure function for hard pomeron exchange with meson states in central rapidity region (requires to measure events with rapidity gap larger than two units).
- study exotic resonance production in two photon physics for large Z nuclei.

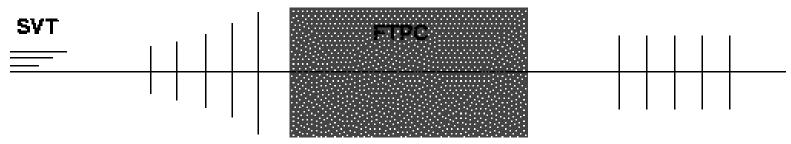
Requirements / Technologies

1 Requirements:

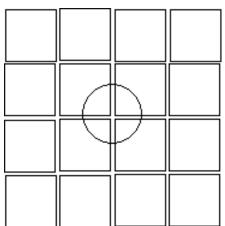
- excellent position resolution, good energy resolution
- good pattern recognition
- operate at room temperature
- cost effective, need large coverage (> 1m²)

1 Technologies:

- Si Pixel (too expensive ??)
- CCD (too difficult ??)
- Si Drift (magnetic field in wrong direction ??)
- Si Strip (see BABAR, NLC proposal, STAR 4th layer)


Strawman / Potential layouts

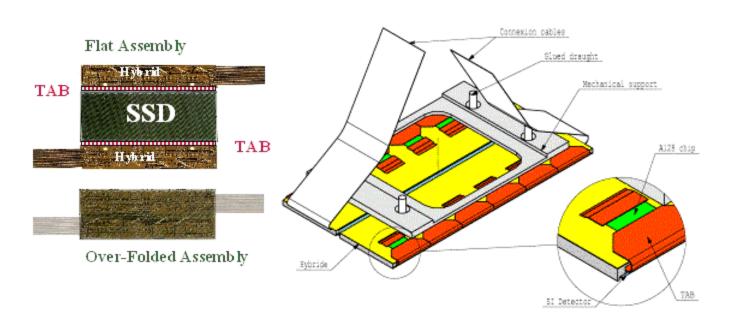
- Strawman technology = Silicon Strip
 - 1 double-sided Silicon Strip detector, 100 micron pitch
 - 5 by 5 cm active area, 1000 channels/wafer
 - 300+320 wafers (see layout below)
 - 1 0.8 and 0.75 m² of active Silicon, respectively
- potential location:in front of FTPC
 - 1 5 layers (z=60,80,100,120,140 cm; r=10,15,20,25,30 cm)
 - $\eta = 2.3-4.0$ (320,000 channels)
- potential location: behind FTPC
 - 1 5 layers (z=350,375,400,425,450 cm; r=20 cm all planes)
 - $\eta = 3.5-5.0 (300,000 \text{ channels})$

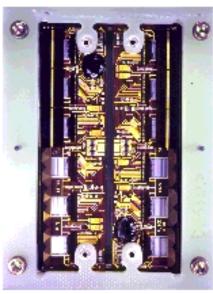


Potential Layouts

n two 'stations' in front and behind the FTPC

- n develop a quasi-circle
- n use square detectors or wedges?
- n use single-sided Si
- n have FEE on disk edges
- n use TAB Technology?




R. Bellwied, June 2001

TAB technology

n elegant solution for STAR-SSD developed by THALES

Detection Module

R. Bellwied, June 2001

SSD-TAB technology

- SSD solution almost perfect for forward strip detector
- FEE folds to behind the active layer, RDO on the layer edges
- n could use double-sided strip detector, ALICE frontend chip, hybrids, bus cables, multiplexer, and ADC boards
- readout pitch too fine (only readout every 2^{nd} strip ? = 190 micron pitch)

Occupancy

- we assume around 1000 charged particles in η =2.5-4
- n first layer before FTPC= 16% occupancy
- n last layer before FTPC = 1.4% occupancy
- we could vary pitch for different layers
- n occupancy not perfectly homogenuous, but close (according to FTPC measurements)

R. Bellwied, June 2001

Cost / Manpower / Schedule

Cost Estimate

around \$ 4 Million for coverage in front and behind the FTPC (based on 4th layer and NLC cost estimates)

1 Manpower

- need a crew about the size of the SVT project
- same level of Instrumentation involvement

Schedule

- the earlier the better
- if proven technology is used we should be able to install by 2004

R. Bellwied, November 2000

STAR Upgrade (for central tracker)

Silicon device to replace TPC, Technologies: drift or strip

Five layers of silicon drift detector Radiation length / layer = 0.5 %Layer Radii Half-lengths $sigma_rphi = 7 \mu m$, $sigma_rz = 10 \mu m$ 44 m² Silicon 25.00 cm 25.00 cm Wafer size: 10 by 10 cm 50.00 cm 50.00 cm # of Wafers: 4500 (incl. spares) # of Channels: 3,388,000 channels, (260 μm 75.00 cm 75.00 cm pitch) 100.00 cm 100.00 cm 125.00 cm 125.00 cm

Five layers of silicon strip detector Radiation length / layer = 0.5 % sigma_rphi = $10 \mu m$, sigma_rz = $? \mu m$ 88 m² Silicon

Wafer size: 10 by 10 cm

of Wafers: 9000 (incl. spares)

of Channels: 27,104,000 channels, (65 μm

Silicon Drift Detector Features

- 1 Mature technology.
- 1 <10 micron resolution achievable with \$'s and R&D. Easy along one axis (anodes).</p>
- 1 <0.5% radiation length/layer achievable if FEE moved to edges.
- Low number of channels translates to low cost silicon detectors with good resolution.
- Detector could be operated with air cooling at room temperature

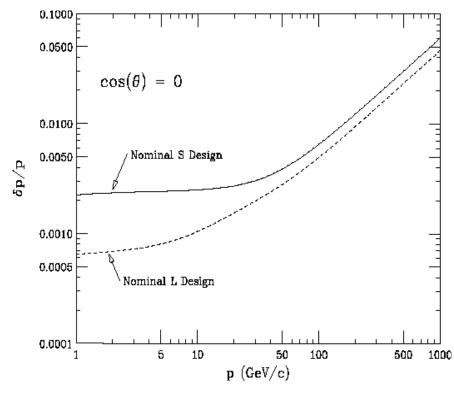
R&D for Large Tracker Application

Improve position resolution to 5µm

- Decrease anode pitch from 250 to 100μm.
- Stiffen resistor chain and drift faster.

Improve radiation length

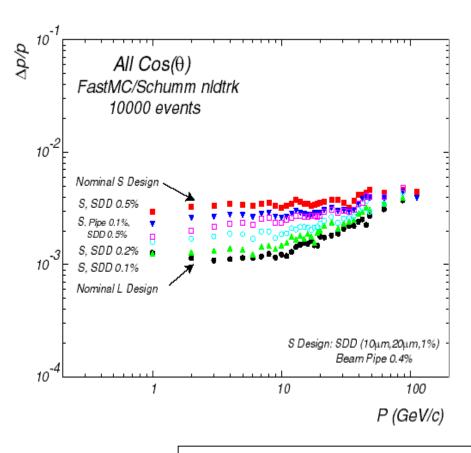
- Reduce wafer thickness from 300μm to 150μm
- Move FEE to edges or change from hybrid to SVX
- Air cooling vs. water cooling
- Use 6in instead of 4in Silicon wafers to reduce #channels.
- More extensive radiation damage studies.
 - Detectors/FEE can withstand around 100 krad (γ,n)
 - PASA is BIPOLAR (intrinsically rad. hard.)
 - SCA can be produced in rad. hard process.


Momentum resolution

- 1 Present: 20 μm pos.res.,1.5% rad.length/layer,Beampipe wall thickness:2 mm
- 1 Future: 5 μm pos.res.,0.5% rad.length/layer,Beampipe wall thickness:0.5 mm

1 Two Track Resolution.

Present: 500 μm


1 Future: 200 μm

- Momentum resolution
 - Modify Position Resolution
 - Modify Radiation length:Si thickness, Electronics
 - Modify Beam Pipe Wall Thickness

Summary

- The STAR experience shows that a Silicon based Vertex Tracker can operate successfully in the RHIC environment.
- 1 The radiation doses and the occupancy are within expectations.
- 1 Certain startup problems have to be expected and anticipated.
- The difficulty in accessing a 'nested' detector has to be stressed. The success rate for repair remains to be seen
- STAR is considering a Silicon disk tracker in forward direction, presently based on strip technology
- STAR is potentially considering a large Silicon tracker in case the TPC does not perform well at high luminosities. For that scale only strip and drift detectors seem to be feasible choices. Such a device would take many years to build and would require a construction budget of about \$25-30 Million.